CLICK HERE FOR THOUSANDS OF FREE BLOGGER TEMPLATES »

jueves, 21 de agosto de 2008

CONCEPTO DE DIODO: Representación simbólica del diodo pn

Un diodo es un dispositivo que permite el paso de la corriente eléctrica en una única dirección. De forma simplificada, la curva característica de un diodo (I-V) consta de dos regiones, por debajo de cierta diferencia de potencial, se comporta como un circuito abierto (no conduce), y por encima de ella como un circuito cerrado con muy pequeña resistencia eléctrica.Debido a este comportamiento, se les suele denominar rectificadores, ya que son dispositivos capaces de convertir una corriente alterna en corriente continua. Su principio de funcionamiento está basado en los experimentos de Lee De Forest.

COMO SE MIDE UN DIODO:

Agarramos el tèster y lo colocamos en la posición de continuidad procedemos a colocar las puntas del tèster en los extremos del diodo a medir. Una vez hecho esto miramos la pantalla y si sale o no algún valor. Luego invertimos las posiciones de las puntas y realizamos la misma operación si conduce en ambas direcciones el diodo se dice que esta “dañado” (o sea que no sirve mas), si lo hace en una dirección es porque el diodo esta bueno es decir, está bien polarizado.

TIPOS DE DIODOS:



Diodo BARITT:

Diodo semejante al diodo IMPATT donde los portadores de carga llamados a atravesar la región de deplexión no provienen de una avalancha sino que son engendrados por inyección de portadores minoritarios en uniones polarizadas en el sentido de la conducción.

Diodo de avalancha:

Diodo de rectificación en el que, mediante una técnica apropiada, se reparte la ruptura inversa, debida al fenómeno de avalancha, en todo el volumen de la unión. El diodo soporta, así, grandes corrientes en conducción inversa sin destruirse.

Diodo de capacidad variable (VARACTOR o VARICAP):

Diodo semiconductor con polarización inversa cuya capacidad entre los terminales disminuye en función de la tensión inversa aplicada entre sus extremos.

Diodo de conmutación:

Diodo semiconductor diseñado para presentar una transición rápida entre el estado de conducción y el estado de bloqueo, y a la inversa.

Diodo rectificador:

Diodo de potencia media o alta que se utiliza para rectificar las corrientes alternas.

Diodo semiconductor:

Diodo que permite el paso de la corriente de su zona p, rica en huecos, a su zona n, rica en electrones.

Diodo de señal:

Diodo semiconductor empleado para la detección o el tratamiento de una señal eléctrica de baja potencia.

Diodo de unión:

Diodo formado por la unión de un material semiconductor de tipo n y otro semiconductor de tipo p.

Diodo Gunn:

Dispositivo semiconductor impropiamente calificado de diodo ya que no contiene una unión sino una sucesión de tres capas de tipo n más o menos dopadas. En presencia de campos eléctricos elevados, el diodo Gunn es escenario de oscilaciones a muy alta frecuencia.

Diodo IMPATT:

Diodo cuyo funcionamiento asocia la multiplicación por avalancha de los portadores de carga y su tiempo de propagación en la unión. Esto conduce, para ciertas frecuencias muy elevadas, a una resistencia negativa que permite utilizar el diodo en modo amplificador o en modo oscilador.

Diodo láser:

Diodo electroluminescente (LED) cuya estructura contiene una cavidad óptica y que está concebido de modo que permita la emisión estimulada, y por tanto la radiación de una onda luminosa quasi-monocromática y coherente (laser).

Diodo PIN:

Unión pn semiconductora que posee dos regiones, una fuertemente dopada n, representada como n++, y otra fuertemente dopada p, representada por p++, y una zona intrínseca de dopado muy débil.

Diodo Schottky:

Diodo formado por un contacto entre un semiconductor y un metal, lo que elimina el almacenamiento de carga y el tiempo de recuperación. Un diodo Schottky puede rectificar corrientes de frecuencia superior a 300 MHz.

Diodo Schokley:

Diodo de cuatro capas p-n-p-n utilizado en los circuitos de conmutación rápida. Además, la tensión directa de este diodo es más baja que en la de un diodo semiconductor de dos regiones.

Diodo TRAPPAT:

Diodo de hiperfrecuencia de semiconductoes que, cuando su unión se polariza en avalancha, presenta una resistencia negativa a frecuencias inferiores al dominio de frecuencias correspondiente al tiempo de tránsito del diodo. Esta resistencia negativa se debe a la generación y desaparición de un plasma de electrones y huecos que resultan de la íntima interacción entre el diodo y una cavidad de hiperfrecuencias de resonancias múltiples.

Diodo túnel:
Diodo semiconductor que tiene una unión pn, en la cual se produce el efecto túnel que da origen a una conductancia diferencial negativa en un cierto intervalo de la característica corriente-tensión. La presencia del tramo de resistencia negativa permite su utilización como componente activo (amplificador/oscilador).

Diodo unitúnel:

Diodo túnel cuyas corrientes de pico y valle son aproximadamente iguales.

Diodo Zener:

Diodo optimizado, mediante la elección del índice de dopad, para su funcionamiento en una región de ruptura inversa, a una tensión ampliamente independiente de la intensidad. Los diodos Zener se utilizan en reguladores de tensión.
Polarización directa:

En este caso, la batería disminuye la barrera de potencial de la zona de carga espacial, permitiendo el paso de la corriente de electrones a través de la unión; es decir, el diodo polarizado directamente conduce la electricidad.
Para que un diodo esté polarizado directamente, tenemos que conectar el polo positivo de la batería al ánodo del diodo y el polo negativo al cátodo. En estas condiciones podemos observar que:
El polo negativo de la batería repele los electrones libres del cristal n, con lo que estos electrones se dirigen hacia la unión p-n.
El polo positivo de la batería atrae a los electrones de valencia del cristal p, esto es equivalente a decir que empuja a los huecos hacia la unión p-n.
Cuando la diferencia de potencial entre los bornes de la batería es mayor que la diferencia de potencial en la zona de carga espacial, los electrones libres del cristal n, adquieren la energía suficiente para saltar a los huecos del cristal p, los cuales previamente se han desplazado hacia la unión p-n.
Una vez que un electrón libre de la zona n salta a la zona p atravesando la zona de carga espacial, cae en uno de los múltiples huecos de la zona p convirtiéndose en electrón de valencia. Una vez ocurrido esto el electrón es atraído por el polo positivo de la batería y se desplaza de átomo en átomo hasta llegar al final del cristal p, desde el cual se introduce en el hilo conductor y llega hasta la batería.
De este modo, con la batería cediendo electrones libres a la zona n y atrayendo electrones de valencia de la zona p, aparece a través del diodo una corriente eléctrica constante hasta el final.

Polarización inversa:


En este caso, el polo negativo de la batería se conecta a la zona p y el polo positivo a la zona n, lo que hace aumentar la zona de carga espacial, y la tensión en dicha zona hasta que se alcanza el valor de la tensión de la batería, tal y como se explica a continuación:
El polo positivo de la batería atrae a los electrones libres de la zona n, los cuales salen del cristal n y se introducen en el conductor dentro del cual se desplazan hasta llegar a la batería. A medida que los electrones libres abandonan la zona n, los átomos pentavalentes que antes eran neutros, al verse desprendidos de su electrón en el orbital de conducción, adquieren estabilidad (8 electrones en la capa de valencia, y una carga eléctrica neta de +1, con lo que se convierten en iones positivos.
El polo negativo de la batería cede electrones libres a los átomos trivalentes de la zona p. Recordemos que estos átomos sólo tienen 3 electrones de valencia, con lo que una vez que han formado los enlaces covalentes con los átomos de silicio, tienen solamente 7 electrones de valencia, siendo el electrón que falta el denominado hueco. El caso es que cuando los electrones libres cedidos por la batería entran en la zona p, caen dentro de estos huecos con lo que los átomos trivalentes adquieren estabilidad (8 electrones en su orbital de valencia) y una carga eléctrica neta de -1, convirtiéndose así en iones negativos.
Este proceso se repite una y otra vez hasta que la zona de carga espacial adquiere el mismo potencial eléctrico que la batería.

0 comentarios: